Math Formulary
Keeping
mathematical
formulary in
memory
is mighty difficult for me,
so I wrote this page as a little compendium
(math rendering by KateX).
Calculus
Notation:
$$\partial$$ partial derivative,
nabla
$$\nabla$$ all partial derivatives,
laplacian
$$\Delta = \nabla^2$$ all second derivatives.
- Chain rule:
for $$f(g(x))$$ with $$z=f(y)$$ and $$y=g(x)$$, derive
$$\frac{\partial f(g(x))}{\partial x} =
\frac{\partial f(g(x))}{\partial y} \cdot
\frac{\partial g(x)}{\partial x}$$,
or short
$$(f \circ g)' = (f' \circ g) \cdot g'$$
- Product rule:
$$\frac{\partial}{\partial x} (f(x) \cdot g(x)) =
\frac{\partial}{\partial x} f(x) \cdot g(x) +
f(x) \cdot \frac{\partial}{\partial x} g(x)$$,
or short
$$(f \cdot g)' = f' \cdot g + f \cdot g'$$
- Quotient rule:
$$\frac{\partial}{\partial x} \left ( f(x) \cdot {g(x)^{-1}} \right ) =
g(x)^{-2} \left (
\frac{\partial}{\partial x} f(x) \cdot g(x) -
f(x) \cdot \frac{\partial}{\partial x} g(x) \right )$$,
or short
$$(\frac{f}{g})' = \frac{f' \cdot g - f \cdot g'}{g^2}$$
- Reciprocal rule:
$$\frac{\partial}{\partial x} f(x)^{-1} =
-\frac{\frac{\partial}{\partial x} f(x)}{f(x)^2}$$,
or short
$$(f^{-1})' = -f' \cdot f^{-2}$$
- Sum rule:
$$\frac{\partial}{\partial x} (f(x)+g(x)) =
\frac{\partial}{\partial x} f(x) +
\frac{\partial}{\partial x} g(x)$$,
or short
$$(f+g)' = f'+g'$$
- Powers:
$$\frac{\partial}{\partial x} x^n = nx^{n-1}$$
- Exponential:
$$\frac{\partial}{\partial x} a^x = a^{x} \ln(a)$$ with
$$\frac{\partial}{\partial x} e^x = e^{x}$$
for special case $$a=e$$, and
$$\frac{\partial}{\partial x} \ln(x) = x^{-1}$$
- Trigonometric:
$$\frac{\partial}{\partial x} \sin(x) = \cos(x)$$,
$$\frac{\partial}{\partial x} \cos(x) = -\sin(x)$$, and
$$\frac{\partial}{\partial x} \tan(x) = 1+\tan^2(x)$$
- Intuition:
3Blue1Brown
Calculus series
Linear algebra
Notation:
$$\vec{u}\cdot\vec{v}$$ or
$$\left \langle u, v \right \rangle$$
dot product,
$$A \vec{u}$$ or $$AB$$
matrix multiplication,
$$\vec{u} \times \vec{v}$$
cross product,
$$A_{ij}$$ i-th row then j-th column of a
matrix,
$$\vec{v}_i$$ i-th row (entry) of a
vector.
- Distributivity:
$$A(\vec{u}+\vec{v}) = A\vec{u}+A\vec{v}$$, and
$$A(B+C) = AB + AC$$
- Associativity of
scalar and
field
multiplication:
$$A(\alpha\vec{u}) = \alpha (A\vec{u}$$)
- Non-commutative
except for
diagonal matrixes:
$$AB \neq BA$$ except when $$A, B$$ are zero outside their diagonal.
- Transpose:
$$(A B)^T = B^T A^T$$, and
$$(A^T)^{-1} = (A^{-1})^T$$, as well as
$$(A + B)^T = A^T + B^T$$; special case
$$A^T = A^{-1}$$ for
orthogonal matrix.
- Invertibility:
$$A^{-1} A = I$$ and $$(A B)^{-1} = B^{-1} A^{-1}$$ iff
square and
$$A = \left [ \vec{e}_1, \vec{e}_1, .., \vec{e}_{n} \right ]$$ for
linearly independent
basis vectors,
, i.e. $$\det(A) \neq 0$$
- Eigenvector:
A $$\vec{v}$$ that does not change direction under
transformation
$$A$$, implying $$(A - \alpha I) \vec{v} = 0$$,
or short
$$A \vec{v} = \alpha \vec{v}$$
- Intuition:
3Blue1Brown
Linear algebra series
Matrix Calculus
Notation
as in calculus and
linear algebra above.
- Jacobian
of $$\vec{y} = \vec{f}_{1..m}(\vec{x}_{1..n})
=
\begin{bmatrix}
f_1(\vec{x})\\
\vdots\\
f_m(\vec{x})
\end{bmatrix}:
\mathbb{R}^n \to \mathbb{R}^m$$, is
$$J = \nabla \vec{f} = \frac{\partial \vec{f}}{\partial \vec{x}}
=
\begin{bmatrix}
\frac{\partial \vec{f}}{\partial \vec{x}_1} & \dots & \frac{\partial \vec{f}}{\partial \vec{x}_n}
\end{bmatrix}
=
\begin{bmatrix}
\nabla^T \vec{f}_1\\
\vdots\\
\nabla^T \vec{f}_m
\end{bmatrix}
=
\begin{bmatrix}
\frac{\partial f_1}{\partial x_1} & \dots & \frac{\partial f_1}{\partial x_n}\\
\vdots & \ddots & \vdots \\
\frac{\partial f_n}{\partial x_1} & \dots & \frac{\partial f_n}{\partial x_n}
\end{bmatrix}$$
- Hessian
of $$y = f(\vec{x}_{1..n}): \mathbb{R}^n \to \mathbb{R}^1$$, is
$$H = \Delta f =
\begin{bmatrix}
\frac{\partial^2 f}{\partial x_1 \partial x_1} & \dots & \frac{\partial^2 f}{\partial x_1 \partial x_n}\\
\vdots & \ddots & \vdots \\
\frac{\partial^2 f}{\partial x_n \partial x_1} & \dots & \frac{\partial^2 f}{\partial x_n \partial x_n}
\end{bmatrix}$$
Conclusion
And that is it! Hope you found something worth noting.
Have a good day to remember!
EOF (Mar:2021)